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Abstract—The Modified Cramér-Rao Bound (MCRB) proves
to be of significant importance in non-standard estimation sce-
narios, when in addition to unknown deterministic parameters
to be estimated, observations also depend on random nuisance
parameters. Given the interest of applications that involve esti-
mation on Lie Groups (LGs), as well as the relevance of non-
standard estimation problems in many practical scenarios, the
main concern in this communication is to derive an intrinsic
MCRB on LGs (LG-MCRB). For this purpose, a modified
unbiasedness constraint must be defined, yielding a modified
Barankin Bound. A closed-form formula of the LG-MCRB is
then provided for a LG Gaussian model on SO(2), representing
2D rotation matrices, while considering non-Gaussian random
nuisance parameters. The validity of this expression is then
assessed through numerical simulations, and compared with
the intrinsic CRB on LGs for a simplified illustrative scenario,
involving a concentrated Gaussian prior distribution on the
random nuisance parameters.

Index Terms—Intrinsic Modified Cramér-Rao Bound on Lie
Groups, Non-standard Estimation on Lie Groups

I. INTRODUCTION

Performance bounds are fundamental tools in any estimation
problem. They are convenient when validating an estimator
built from a statistical model, especially in situations where
implementing the optimal estimator is not feasible. They
also give insights on the ultimate achievable minimum mean
squared error (MSE) that an estimator can reach for a given
model. In the realm of deterministic parameters estimation,
the Cramér-Rao bound (CRB) [1]–[4] is the most widely used
and the easiest to compute, provided that a tractable form of
the observations’ likelihood is available and the considered
estimator is unbiased. However, in many practical estimation
problems [5]–[10], the likelihood does not solely depend on
the sought deterministic parameters, but also on random nui-
sance parameters. Unfortunately, in such cases, the likelihood
can only be computed by marginalizing with respect to these
nuisance parameters. Thus, deriving a closed-form expression
of the likelihood, and consequently the CRB, can become
challenging, and inaccessible in a non-Gaussian context. To
bypass this stumbling block, prior works [5], [6] introduced the
Modified CRB (MCRB) on unknown deterministic parameters
in the presence of random nuisance parameters.

The formulation of the standard CRB and MCRB inequal-
ities is specific to observations and parameters lying on a
Euclidean space. However, in the last decade, a number of
applications in navigation, robotics and automatic control

[11], [12] shed light on estimation problems where both the
unknown parameters and observations are constrained to lie
in a Riemannian manifold [13], [14], e.g., matrix Lie Groups
(LGs). For instance, in the context of autonomous naviga-
tion, the Lie groups characterizing rotation matrices, SO(n)
and rotation-translation matrices, SE(n), are extensively em-
ployed to model the attitude and pose of dynamic systems.
In this context, remote sensors such as RADAR or LIDAR
provide measurements of rotation angles constrained to lie on
SO(2). Also, in the context of computer vision, the unknown
homography between two images captured by a camera can
be modelled using the Lie group of similarity Sim(3), and
estimated thanks to SE(3) measurements provided by an
odometer. To be consistent with the geometrical properties
of these specific parameters and observations, it is crucial to
derive intrinsic bounds taking into account their LG geometry.

In the context of matrix LGs, a seminal intrinsic bound
was proposed in [15]–[18], but suffers from two main short-
comings: first, it only admits closed-form expressions for the
LG SO(n), and second the observations are restricted to lie
in a Euclidean space. In [19], based on the formalism of the
Barankin Bound and the uniform unbiasedness condition [20],
an alternative intrinsic CRB that allows to overcome these
shortcomings was derived. On the other hand, LG estima-
tion problems with nuisance parameters is a crucial issue in
various applications: i) in robotics [11], [21], estimating the
robot’s attitude or pose in LGs can be achieved with camera
measurements that depend on the latent affine transformation
between the observed 2D point and the 2D robot position;
ii) in computer vision, the registration of medical images
from different modalities or time-points implies an unknown
similarity transformation between the observed images and the
reference image, lying on Sim(2) [22], and nuisance parame-
ters encompass the measured 2D pixel points of the reference
image; or iii) in radar tracking, sequentially estimating the
attitude of an extended mobile target implies the existence of
an unknown latent covariance matrix modelling the dispersion
of radar measurements [23]. Then, to tackle this plethora of
estimation problems, it is important to derive intrinsic bounds
taking into account nuisance parameters in the LG modelling.

As a contribution to this framework, our concern is to
derive a generalization on matrix LGs of the MCRB, so-called
Intrinsic MCRB (LG-MCRB), for estimation problems with
unknown deterministic LG parameters in the presence of LG



random nuisance parameters. To achieve this, we leverage the
demonstration of the LG-CRB developed in [19]. Since it is
possible to perform integration on the LG product of the LG
of observations G′ and the LG of nuisance parameters Gr, we
can define a joint distribution on the LG G′×Gr. This property
allows to deduce a modified unbiasedness condition and then
an intrinsic modified Barankin bound (BB) on LGs (LG-
MBB), with respect to modified observations lying on G′×Gr.
Then, with a similar reasoning as [19], we can determine the
expression of the sought LG-MCRB. The explicit LG-MCRB
formula is exemplified with a practical estimation problem
for a LG Gaussian model on SO(2) in the presence of non-
Gaussian random nuisance parameters. In line with the discus-
sions on the looseness of the MCRB compared to the CRB in
the Euclidean framework [5]–[7], we compare the closed-form
expressions of the proposed LG-MCRB bound with the LG-
CRB by assuming, solely for illustration purposes, an uniform
and a Gaussian prior on the random nuisance parameter.

II. PROBLEM STATEMENT

A. LG definitions

A matrix LG G ⊂ Rn×n is a matrix space which respects
the properties of smooth manifold and group. It implies the
definition of a tangent space, also referred to as Lie algebra,
and denoted g. The exponential and logarithmic maps, denoted
respectively, ExpG : g → G and LogG : G → g associate
each element of the LG to g. Since the latter is isomorphic to
Rm, we can define two bijections [.]∧ : Rm → g and [.]∨ :
g → Rm. Thus, the exponential and logarithmic mappings
can be reformulated as, ∀ a ∈ Rm, Exp∧G (a) = ExpG ([a]∧G)
and ∀ X ∈ G, [LogG (X)]

∨
G = Log∨

G (X). As an example, the
Special Orthogonal group SO(2) (later used in the illustrative
example) is a Lie group of 2D rotation matrices R, such that
R⊤R = I, where ⊤ denotes the transpose operator. SO(2)
describes all possible rotations of a physical object in a plane.
Let θ ∈ R denote the rotation angle, the exponential and
logarithmic applications are then defined as,

Exp∧
SO(2) (θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= R, (1)

Log∨
SO(2) (R) =

[
0 −θ
θ 0

]∨
= θ. (2)

B. Integration and derivation on LGs

The properties of smooth manifold allow to easily define the
concept of derivation by generalizing the notion of Euclidean
directional derivative in an intrinsic way. Let h : G → G′ be
a LG-valued function, the right Lie derivative of h on X ∈ G
with dimension m, is defined as,

LR
h(X)

def
=

∂Log∨
G

(
h(X)−1h(XExp∧

G (δ)
)
)

∂δ

∣∣∣∣∣
δ=0

. (3)

wherein δ ∈ Rm. Particularly, if h is real-valued, then
Log∨

G (.) = I (where I denotes the identity matrix with
appropriate dimension). Furthermore, we can define the notion
of integration. Indeed, the concept of volume forms can be

defined for any manifold, and specifically for a LG it yields
a group measure. Let f : G→ Rm, the integration on LGs is
defined as,

I =

∫
G

f (X)λG (dX) . (4)

where λG denotes a left-invariant volume form, termed Haar
measure [24]. This definition can straightforwardly be gener-
alized to a multivariate function.

C. The Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff (BCH) formula [25, Theo-
rem 5.5] is a fundamental result in LGs providing an explicit
expression for Log∨G

(
Exp∧

G (a)Exp∧G (b)
)
= BCH(a,b) ̸=

a + b since most LGs are non-commutative. A useful ap-
proximation of the BCH provides the following expression,
∀ (a,b) ∈ Rm × Rm:

Log∨G
(
Exp∧

G (a)Exp∧
G (b)

)
= b+ ψG(b)a+O(∥a∥2). (5)

where ψG(b)
def
= adG(b)

eadG(b)−1
stands for the inverse of the left

Jacobian matrix of G and adG(.) : Rm → Rm×m is the adjoint
representation on g of the element b.

D. Standard estimation on LGs

Let Z ∈ G′ ⊂ Rn×n be a set of observations on a matrix LG
G′. Z is connected to an unknown parameter X0 ∈ G through
the likelihood function p(Z|X0). For the sake of generality,
let H : G→ G′′ be a LG-valued function, then we seek for an
estimator of H(X0) from observations Z, denoted Ĥ(X0). An
essential question is, “how to assess the discrepancy between
H(X0) and Ĥ(X0)?”. An intrinsic metric classically used in
LG estimation problems [16], [19], [21] is,

lG′′

(
H(X0), Ĥ(X0)

)
def
= Log∨

G′′

(
H(X0)

−1Ĥ(X0)
)
. (6)

referred to as l(0)G′′
nota.
= lG′′

(
H(X0), Ĥ(X0)

)
in the sequel

for the sake of clarity. Two fundamental quantities can be
derived from (6) [19],

• The intrinsic bias defined as the mean value of the
intrinsic gap (6),

bZ|X0

(
H(X0), Ĥ(X0)

)
def
=

∫
G′
l
(0)
G′′p(Z|X0)λG′(dZ),

nota.
= Ep(Z|X0)

(
l
(0)
G′′

)
. (7)

• The intrinsic MSE (LG-MSE) defined as the correlation
matrix of the intrinsic gap (6),

CZ|X0

(
H(X0), Ĥ(X0)

)
def
= Ep(Z|X0)

(
l
(0)
G′′l

(0)⊤
G′′

)
.

(8)



E. Non-standard estimation on LGs

Unlike standard estimation problems for which a closed-
form expression of p(Z|X0) exists, we tackle in this work
a non-standard estimation problem where the latter is only
accessible through an integral form, i.e., Z is connected to an
unknown parameter vector X0 ∈ G through a “compound”
probability density function (pdf) p(Z,Y|X0), where Y ∈
Gr are random nuisance parameters on a matrix LG Gr. In
general the pdf of Y might depend on X0, p(Y|X0), then

p(Z|X0) =

∫
Gr

p(Z,Y|X0)λGr
(dY). (9)

Unfortunately, this marginalization is in general mathemat-
ically intractable. This is why we focus on the joint pdf
between observations and the random nuisance parameters,
p(Z,Y|X0). In this framework, the intrinsic bias (7) and
covariance (8) metrics must be extended to the LG G′ ×Gr.

III. INTRINSIC MODIFIED CRAMÉR-RAO LOWER BOUND

In this section, we first recall in III-A the derivations of
the intrinsic BB on LGs (LG-BB), established in [19], to
make then a further extension of these results to address non-
standard estimation problems on LGs in III-B.

A. Review on the intrinsic Barankin Bound and LG-CRB

Recall that, for standard estimation problems, Z is a set of
observations on G′ depending on the unknown parameter X0

on G with dimension m, and characterized by the likelihood
function p(Z|X0). H is a smooth function on G → G′′. To
define a lower bound, a fundamental property in the Euclidean
case is the strict-sense/uniform unbiasedness. This property is
well-known in the Euclidean framework and allows to theorize
the BB [20]. An intrinsic formulation of this constraint on the
LG estimator Ĥ(X0), for standard estimation, is [19],

bZ|X

(
H(X0), Ĥ(X0)

)
=lG′′ (H(X0),H(X)) , ∀X ∈ G.

(10)

In a similar fashion as the BB in the Euclidean space:
Definition 3.1 (LG-BB on LG): The LG-BB, denoted

PLG-BB, is defined as the minimum value of the intrinsic MSE
(8) under the intrinsic uniform unbiasedness constraint (10),

PLG-BB = min
Ĥ(X0)

CZ|X0
(H(X0), Ĥ(X0))

s.t. bZ|X

(
H(X0), Ĥ(X0)

)
= lG′′ (H(X0),H(X)) ,

∀ X ∈ G. (11)

A lower bound P on the LG-MSE is then derived from a
discretization of the constraint (10) on a set of test points
X(1:L) = {X(1), . . . ,X(L)} ∈ G yielding the inequality,

CZ|X0
(H(X0), Ĥ(X0)) ⪰ P, P = ∆G R−1

vX0
∆⊤

G. (12)

where ⪰ means that CZ|X0
(H(X0), Ĥ(X0))−P is positive

semi-definite (Löwner ordering [26]), and

∆⊤
G

def
=


lG′′

(
H(X0),H(X(1))

)⊤
...

lG′′
(
H(X0),H(X(L))

)⊤
 , (13)

RvX0
= Ep(Z|X0)

(
vX0

(
Z|X(1:L)

)
vX0

(
Z|X(1:L)

)⊤)
.

with vX0

(
Z|X(1:L)

)
=
[
vX0

(
Z|X(1)

)
, . . . , vX0

(
Z|X(L)

)]⊤
is the vector gathering the likelihood ratios vX0

(
Z|X(l)

)
=

p(Z|X(l))

p(Z|X0)
, ∀l ∈ {1, . . . , L}.

Definition 3.2 (LG-CRB): The inequality (12) is the corner-
stone for deriving the LG-CRB; selecting the test points

X(1:L) = {X0,X0 Exp∧
G (i1 δ1) , ..,X0 Exp∧

G (iL−1 δL−1)},

il =

[
0, . . . , 1︸︷︷︸

lth component

. . . , 0
]⊤

∈ Rm. (14)

yields the definition of the LG-CRB, when δl tends to 0,

PLG-CRB = LR
H(X0)

Ep(Z|X0)

(
s(Z|X0)s(Z|X0)

⊤)−1

× (LR
H(X0)

)⊤. (15)

where, s(Z|X0) =
∂ log p(Z|X0Exp∧G(δ))

∂δ

∣∣∣∣
δ=0

, and LR
H(X0)

denotes the right Lie derivative of H according to X0 (3).

B. Derivation of the intrinsic MCRB (LG-MCRB)

Theorem 1 (Intrinsic modified unbiasedness constraint for
non-standard estimation): The constraint previously defined in
(10), can be extended to non-standard estimation as: ∀X ∈ G,

bZ,Y|X0

(
H(X0), Ĥ(X0)

)
= lG′′ (H(X0),H(X)) . (16)

where the intrinsic bias is now defined w.r.t. to p(Z,Y|X0).
Proof. 1) First, assuming that the support of p(Z,Y|X) is

independent of X, we have ∀X ∈ G,

Ep(Z,Y|X)

(
l
(0)
G′′

)
=

∫
G′′
l
(0)
G′′p(Z,Y|X)λG(dZ, dY),

=

∫
G′′
l
(0)
G′′

p(Z,Y|X)

p(Z,Y|X0)
p(Z,Y|X0)λG(dZ, dY),

= Ep(Z,Y|X0)

(
l
(0)
G′′vX0

(Z,Y|X)
)
. (17)

where the ratio is now considered w.r.t. the joint pdf

p(Z,Y|X0), i.e., vX0 (Z,Y|X) =
p(Z,Y|X)

p(Z,Y|X0)
.

2) Second, for any estimator Ĥ(X0) verifying the constraint
(10), we have ∀X ∈ G:

lG′′ (H(X0),H(X)) = bZ|X

(
H(X0), Ĥ(X0)

)
,

def
= Ep(Z|X)

(
l
(0)
G′′

)
,

=

∫
G′′

l
(0)
G′′p(Z|X)λG′′(dZ). (18)



Moreover, by applying the marginalization formula to (18),

p(Z|X) =

∫
Gr

p(Z,Y|X)λGr (dY),

(18) =
∫
G′′

l
(0)
G′′p(Z|X)λG′′(dZ),

=

∫
G′′×Gr

l
(0)
G′′p(Z,Y|X)λG′′×Gr

(dZ, dY),

def
= Ep(Z,Y|X)

(
l
(0)
G′′

)
. (19)

As detailed in (17), introducing the ratio vX0(Z,Y|X0),
Ep(Z,Y|X)

(
l
(0)
G′′

)
can be recast as,

Ep(Z,Y|X)

(
l
(0)
G′′

)
= Ep(Z,Y|X0)

(
l
(0)
G′′vX0

(Z,Y|X)
)
,

nota.
= bZ,Y|X0

(
H(X0), Ĥ(X0)

)
.

Finally the modified unbiasedness constraint follows from
combining 1) and 2), where the intrinsic bias is now defined
w.r.t. to p(Z,Y|X0) ,

bZ,Y|X0

(
H(X0), Ĥ(X0)

)
def
= Ep(Z,Y|X0)

(
l
(0)
G′′vX0

(Z,Y|X)
)
,∀X ∈ G. (20)

□

Consequently, the minimization problem subject to the
constraint (16) can be extended by considering the joint pdf
p(Z,Y|X0) when defining the LG-MSE,

CZ,Y|X0
(H(X0), Ĥ(X0))

def
= Ep(Z,Y|X0)

(
l
(0)
G′′

(
l
(0)
G′′

)⊤)
.

(21)
Theorem 2 (Intrinsic Modified BB on LGs (LG-MBB)): The

LG-MBB, denoted PLG-MBB, can be defined as the minimum
value of the modified intrinsic MSE under the modified
uniform ubiasedness constraint (16) in Theorem 1.

PLG-MBB
def
= min

Ĥ(X0)

CZ,Y|X0
(H(X0), Ĥ(X0)) (22)

s.t. bZ,Y|X0

(
H(X0), Ĥ(X0)

)
= lG′′ (H(X0),H(X)) ,

∀ X ∈ G.

Then, following a similar reasoning as the LG-CRB fully
derived in [19] and sketched in III-A, we define a LG-MCRB:

Definition 3.3 (Intrinsic MCRB on LG (LG-MCRB)): The
LG-MCRB that approximates PLG-MBB for a discrete set of
test points of the form (14) is defined as,

PLG-MCRB = LR
H(X0)

Ep(Z,Y|X0)

(
s(Z,Y|X0)s(Z,Y|X0)

⊤)−1

× (LR
H(X0)

)⊤. (23)

where, s(Z,Y|X0) =
∂ log p(Z,Y|X0Exp∧G(δ))

∂δ

∣∣∣∣
δ=0

, and

LR
H(X0)

is previously defined in (3).

Proof. Following similar lines as [19], a lower bound on this
constrained minimization problem for a set of points X(1:L)

verifying the constraint (16), yields the following inequality,

CZ,Y|X0
(H(X0), Ĥ(X0)) ⪰ ∆G

(
R′

vX0

)−1

∆⊤
G. (24)

where applying (16) on X(1:L) yields the matrix
of constraints ∆G, with vX0

(
Z,Y|X(1:L)

)
=[

vX0

(
Z,Y|X(1)

)
, . . . , vX0

(
Z,Y|X(L)

)]⊤
,

∆⊤
G

def
=


lG′′

(
H(X0),H(X(1))

)⊤
...

lG′′
(
H(X0),H(X(L))

)⊤
 ,

= Ep(Z,Y|X0)

(
vX0

(
Z,Y|X(1:L)

)
l
(0)⊤
G′′

)
.

R′
vX0

=

Ep(Z,Y|X0)

(
vX0

(
Z,Y|X(1:L)

)
vX0

(
Z,Y|X(1:L)

)⊤)
.

Following similar lines of proof of Theorem 3.3.1 in [19, §3.3],
using the inequality (24) on test points of the form (14), yields
the definition of the sought LG-MCRB. □

Important particular case: In the particular case of uni-
modular LGs [27] (such as SO(n) and SE(n)), provided that
the function δ → log p

(
Z,Y|X0Exp∧

G(δ)
)

is sufficiently reg-
ular, the aforementioned expression can be further simplified,

Ep(Z,Y|X0)

(
s(Z,Y|X0) s(Z,Y|X0)

⊤) = −Ep(Z,Y|X0)(
∂2log p(Z,Y|X0 Exp∧

G (δ1) Exp∧
G (δ2))

∂ δ1 ∂ δ2

∣∣∣∣
δ1,δ2=0

)
. (25)

This formula is useful as it allows to derive closed-form
expressions of the LG-MCRB, by injecting (25) in (23).

IV. CLOSED-FORM EXPRESSIONS

A. Considered problem

For the sake of illustration, we consider an odometer system
embedded with a camera, measuring its rotation Xc ∈ SO(2)
w.r.t. a fixed world frame. The camera captures N mea-
surements of the position of a landmark represented with
an orientation {Y(i)

p }Ni=1 ∈ SO(2). The aim is to infer the
unknown relative orientation Xcp between camera and the
landmark. We use the information provided by X

(i)
c , while

taking into account the latent rotation Y
(i)
p .

In other words, X
(i)
c can be decomposed as X

(i)
c =

XcpY
(i)
p . The uncertainty on the measurement of X

(i)
c can

be modeled by a Gaussian distribution on SO(2), yielding the
following observation model,

Z(i) = XcpY
(i)
p Exp∧

SO(2) (ni) , ni ∼ N (0, σ2
n). (26)

As a matter of fact, the latent variable Y
(i)
p is classically

estimated by a tracking algorithm taking advantage of the
camera pixel measurements [28]. In this dynamic context, note
that a recent study [29] has proposed a recursive posterior



Fig. 1: Schematic of the illustrative example

Cramér-Rao bound on matrix Lie Groups. It follows that Y(i)
p

is random with LG-mean I and with variance depending on
the algorithms’ estimation error.
In the following, we are interested in deriving a Maximum
Likelihood (ML) estimator of Xcp, and then computing its LG-
MCRB in the presence of Y

(i)
p depending on its uncertainty

modeled by a prior distribution.

B. Maximum likelihood estimator

The standard LG-ML is obtained by maximizing the like-
lihood of the independent observations Z = {Z(1), . . . ,Z(I)}
depending on Yp = {Y(1)

p , . . . ,Y
(I)
p } also independent of

each other. Nevertheless, as the latter are also unknown, it
yields a non-standard LG-ML estimator of Xcp [7, §IV],(

X̂cp, Ŷp

)
= argmax

Xcp,Yp

p(Z|Yp,Xcp), (27)

= argmax
Xcp,Yp

N∏
i=1

p(Z(i)|Y(i)
p ,Xcp). (28)

Due to the presence of Y
(i)
p , (26) is under-determined and it

is not possible to deduce an analytical solution of X̂cp. To
overcome that, we take advantage of the commutativity of
SO(2) and apply the operator Log∨SO(2) (·) on (26). It yields:

Log∨
SO(2)

(
Z(i)

)
= Log∨

SO(2) (Xcp)+Log∨
SO(2)

(
Y(i)

p

)
+ni.

(29)
Then, by noting z(i) = Log∨SO(2)

(
Z(i)

)
, y(i) =

Log∨
SO(2)

(
Y

(i)
p

)
and xcp = Log∨SO(2) (Xcp), we propose to

find X̂cp verifying the new following problem:

x̂cp = argmax
xcp

N∏
i=1

p(z(i)|y(i), xcp), (30)

= argmax
xcp

N∏
i=1

N (xcp + E
(
y(i)
)
, σ2

n). (31)

X̂cp = Exp∧
SO(2) (x̂cp) . (32)

As the intrinsic mean of Y(i) is I, E
(

Log∨SO(2)

(
Y

(i)
p

))
= 0,

it is straightforward to deduce:

X̂cp = Exp∧SO(2)

(
1

N

N∑
i=1

z(i)

)
. (33)

Remark: Even though we make use of the commutativity of
SO(2) for simplicity, the reasoning behind deriving a LG-
ML of Xcp can translate to non-commutative groups such as
SO(3) by generalizing the model (26). Indeed, to compute
Log∨SO(3)

(
Z(i)

)
, we now need to apply the BCH formula (5)

which makes appear ψSO(3)

(
Log∨

SO(3) (ni)
)

where ni is the
observation noise. If we assume the variance noise is low, the
latter can be approximated by the identity matrix yielding the
same estimator (33) provided that the intrinsic mean of Y

(i)
p

is I.

C. LG-MCRB for a uniform random nuisance parameter

In the following, we consider that the knowledge of the
parameter Y

(i)
p is provided with some level of uncertainty,

modeled by a random uniform noise projected on SO(2)
defined for any angle θ ∈ [−π, π],

Y(i)
p = I× Exp∧

SO(2) (bi) , bi ∼ U([−θ, θ]). (34)

Due to the presence of uniform noise in the expression of
Yp, the likelihood p(Z|Xcp) can not be analytically derived.
Thus, we tackle a non-standard estimation problem for Xcp.
In order to derive a lower bound on the estimation of Xcp

from Z, in the presence of the random nuisance parameter
Yp, we will make use of the LG-MCRB defined in (23). More
specifically, we will use the expression in (25) since SO(2) is
unimodular. Let, δ1, δ2 ∈ R, and denote the intrinsic modified
Fisher information as J1, then:

J1 = Ep(Z,Yp|Xcp) (a) ,

a =
∂2log p(Z,Yp|Xcp Exp∧

SO(2) (δ1) Exp∧SO(2) (δ2))

∂ δ1 ∂ δ2

∣∣∣∣∣
δ1,δ2=0

.

In order to compute J1, we need to define p(Z,Yp|Xcp),

p(Z,Yp|Xcp) = p(Z|Yp,Xcp)p(Yp),

It is important to remark here that we do not need to know
p(Yp) to compute the LG-MCRB, but only p(Z|Yp,Xcp),

p(Z|Yp,Xcp) ∝ exp

(
−1

2

N∑
i=1

lSO(2)(XcpY
(i)
p ,Z(i))2

σ2
n

)
,

(35)

and therefore,

a =
∂2log p(Z|Yp,Xcp Exp∧

SO(2) (δ1) Exp∧SO(2) (δ2))

∂ δ1 ∂ δ2

∣∣∣∣∣
δ1,δ2=0

.



Furthermore,

log p(Z|Yp,Xcp Exp∧
SO(2) (δ1) Exp∧

SO(2) (δ2)) =

− 1

2

N∑
i=1

lSO(2)(XcpExp∧SO(2) (δ1) Exp∧
SO(2) (δ2)Y

(i)
p ,Z(i))2

σ2
n

,

= −1

2

N∑
i=1

lSO(2)(XcpY
(i)
p Exp∧

SO(2) (δ1 + δ2) ,Z
(i))2

σ2
n

.

(36)

Note that the expression (36) stems from SO(2) be-
ing commutative: we have Exp∧SO(2) (δ1)Exp∧

SO(2) (δ2) =

Exp∧
SO(2) (δ1 + δ2). In addition,

XcpExp∧
SO(2) (δ1 + δ2)Y

(i)
p = XcpY

(i)
p Exp∧

SO(2) (δ1 + δ2) .

The derivative of (36) can be obtained in two steps:
1) First, consider the first-order Taylor expansion of
lSO(2)

(
XcpY

(i)
p Exp∧G (δ) ,Z(i)

)
, given by

lSO(2)

(
XcpY

(i)
p ,Z(i)

)
+
∂lSO(2)

(
XcpY

(i)
p Exp∧

SO(2) (ϵ) ,Z
(i)
)

∂ϵ

∣∣∣∣∣∣
ϵ=0

δ +O(δ2).

2) Using the BCH formula (5),

∂lSO(2)

(
XcpY

(i)
p Exp∧

SO(2) (ϵ) ,Z
(i)
)

∂ϵ

∣∣∣∣∣∣
ϵ=0

(37)

= −ψSO(2)

(
lSO(2)

(
XcpY

(i)
p ,Z(i)

))
,

Since SO(2) is commutative, we have ψSO(2) (.) = 1. Thus,
combining steps 1) and 2), (36) becomes:

log p(Z|Yp,Xcp Exp∧
SO(2) (δ1) Exp∧

SO(2) (δ2)) =

− 1

2

N∑
i=1

(
lSO(2)(XcpY

(i)
p ,Z(i))− (δ1 + δ2)

)2
σ2
n

+O
(
(δ1 + δ2)

2
)

(38)

By double differentiating (38) w.r.t. to δ1, δ2, and by taking
δ1 = δ2 = 0, we obtain, a =

∑N
i=1

1
σ2
n

, therefore J1 = N
σ2
n

and the LG-MCRB for this model is,

PLG-MCRB
def
= J−1

1 =
σ2
n

N
(39)

Remark: Even though we exemplify the utilization of the
bound for SO(2), the steps to derive the LG-MCRB for other
non-commutative Lie groups such as SE(2) or SO(3) are still
valid. In general for a set of independent observations such
that Z(i) = XcpY

(i)
p Exp∧G (ni), ni ∼ N (0,Σ), the LG-FIM

is given by denoting ψ̃
(i)

G
nota.
= ψG

(
lG(XcpY

(i)
p ,Z(i))

)
and

Ad
(i)
G = AdG

(
Y

(i)
p

−1
X−1

cp

)
, the adjoint representation of

the LG G, we have:

J1 =

N∑
i=1

E
(
ψ̃

(i)

G

⊤
Ad

(i)
G

⊤
Σ−1Ad

(i)
G ψ̃

(i)

G

)
. (40)

D. LG-MCRB and LG-CRB for a Gaussian random nuisance
parameter

Solely for the purpose of comparing the proposed LG-
MCRB with the LG-CRB, we also consider the case where
the random nuisance parameter is modeled by,

Y(i)
p = I× Exp∧SO(2) (bi) , bi ∼ N (0, σ2

b ). (41)

Under this assumption, and SO(2) being commutative,

Z(i) = XcpExp∧
SO(2) (ni + bi) , i ∈ {1, . . . , N},

thus we are now able to derive the marginal pdf p(Z|Xcp):

p(Z|Xcp) ∝ exp

(
−1

2

N∑
i=1

lSO(2)(Xcp,Z
(i))2

σ2
n + σ2

b

)
. (42)

In order to compute the LG-MCRB, we provide the analytical
expression of the joint pdf p(Z,Yp|Xcp):

p(Z,Yp|Xcp) ∝ exp

(
−1

2

N∑
i=1

lSO(2)(XcpY
(i)
p ,Z(i))2

σ2
n

)

× exp

(
−1

2

N∑
i=1

lSO(2)(I,Y
(i)
p )2

σ2
b

)
. (43)

Following similar lines as Sec. IV-C, while considering the
likelihood (42) in the derivation steps of the LG-CRB, and
the joint pdf (43) for the derivation of the LG-MCRB, we
obtain the following expressions,

PLG-CRB =
σ2
n + σ2

b

N
≥ PLG-MCRB =

σ2
n

N
(44)

V. NUMERICAL SIMULATIONS

A. Simulation protocol and results

In this section, the proposed LG-MCRB is numerically
validated by comparison with the LG-MSE of the estimator
(29), considering the two priors defined in (34) and (41). To
build the latter, the measurements are generated hierarchi-
cally: first drawing Y

(i)
p according to the considered prior,

and then drawing Z(i) according to (26) with a true value
Xcp = Exp∧

SO(2)

(
π
4

)
. The empirical intrinsic MSE (LG-MSE)

is obtained as,

LG-MSE =
1

Mc

Mc∑
mc=1

l2SO(2)

(
Xcp,

(
X̂cp

)
mc

)
, (45)

where Mc is the number of realizations (Mc = 2000 Monte
Carlo trials) and

(
X̂cp

)
mc

is the estimator obtained, using the
ML estimator (33), for the mc-th realization of the observation
noise. We carry out two computer experiments with fixed σ2

n

and a varying number of observations:
• First prior: the random nuisance parameters are drawn ac-

cording to Y
(i)
p = I×Exp∧SO(2) (bi) , bi ∼ U([−0.5, 0.5])

(in rad) and the observations are drawn according to
Z(i) = XcpY

(i)
p Exp∧

SO(2) (ni) , ni ∼ N (0, σ2
n) with

σ2
n = 0.2 rad2, for 1 ≤ i ≤ N , where the total number of



observations varies across the range 2 ≤ N ≤ 5000. Fig.
2a displays the LG-MSE, alongside the LG-MCRB (39).

• Second prior: the random nuisance parameters are drawn
according to Y

(i)
p = I × Exp∧

SO(2) (bi) , bi ∼ N (0, σ2
b )

with σ2
b = 0.2 rad2 and the observations are drawn

according to Z(i) = XcpY
(i)
p Exp∧

SO(2) (ni) , ni ∼
N (0, σ2

n) with σ2
n = 0.2 rad2, for 1 ≤ i ≤ N , where

the total number of observations varies across the range
2 ≤ N ≤ 5000. Fig. 2b displays the LG-MSE, alongside
both LG-MCRB and LG-CRB (44).
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Fig. 2: Evolution of the LG-MSE (blue dashed line), assuming
a uniform prior in 2a, alongside the corresponding LG-MCRB
(orange straight line) on SO(2); and a Gaussian prior in
2b, alongside the corresponding LG-MCRB and LG-CRB
(orange and green straight lines) on SO(2); as the number
of observations I increases (2 ≤ N ≤ 5000).

Furthermore, we carry out two similar computer experi-
ments for a fixed number of observations N = 500 and a
varying measurement noise variance σ2

n ∈ [0.1, 1] (rad2). The
considered priors are the same as described in the previous
experiments.
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Fig. 3: Evolution of the LG-MSE (blue dashed line), assuming
a uniform prior in 3a, alongside the LG-MCRB (orange
straight line) on SO(2); and a Gaussian prior in 3b, alongside
the LG-MCRB and LG-CRB (orange and green straight line);
for σ2

n ∈ [0.1, 1] (rad2).

B. Discussion of results

The results in Fig. 2 and Fig. 3 numerically validate the
proposed LG-MCRB. The latter consistently lower bounds the
LG-MSE, across varying measurement noise variance values
σ2
n, as illustrated in Fig. 3, and varying number of observations
N , as illustrated in Fig. 2. These results hold irrespective of
the prior on the random nuisance parameter. Similar to the
well-known Euclidean results, the LG-CRB and LG-MCRB
on SO(2) are valid when the signal-to-noise ratio (SNR) is
high or the number of observations is large. For low SNR, the
LG-MSE rises sharply due to the increase in bias. Furthermore,
in line with the discussions on the comparison between CRB
and MCRB in the Euclidean case [5], [6], while the MCRB
guarantees general feasibility, it is indeed slightly looser than
the standard CRB, as highlighted by inequality (44) and further



illustrated by Fig. 2b and Fig. 3b. However, the LG-MCRB is
relevant in situations where the LG-CRB is inaccessible, and
we observe in Fig. 2a that the gap between LG-MSE and LG-
MCRB is small. We also observe in Fig. 3b that the LG-MCRB
approaches the LG-CRB as the measurement uncertainty σ2

n

increases, which could suggest that the LG-MCRB is tighter
in situations involving larger levels of measurement noise.

VI. CONCLUSION

In this article, we derived a generalization of the MCRB
on LGs, which proves invaluable in non-standard estimation
problems. By adapting the intrinsic unbiasedness constraint
and the Barankin Bound formalism to this class of estimation
problems, we were able to derive the sought LG-MCRB. We
further derived closed-form expressions of the latter for a
Gaussian model on SO(2) with parameters on SO(2), in the
presence of random nuisance parameters. The findings through
numerical simulations underscore the validity and relevance
of the proposed bound to address non-standard estimation
problems. Future work will address more in depth the current
findings on the slight discrepancy between LG-CRB and LG-
MCRB. In fact, as detailed in [7, §III.B], authors proposed a
more stringent class of MCRBs in the Euclidean framework.
Nonetheless, the constraints are associated with the Hybrid
CRB, and their extension to LGs is not straightforward.
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